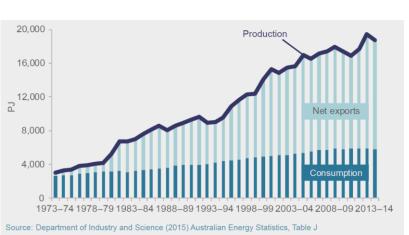
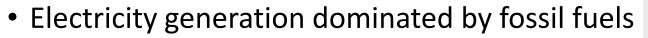


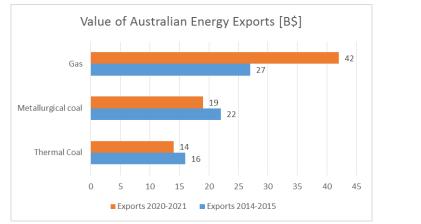
Effective CO₂-capture technology development in Australia

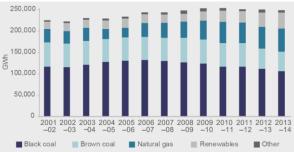
Paul Feron | Senior Principal Research Scientist


8 August 2016

CSIRO ENERGY www.csiro.au

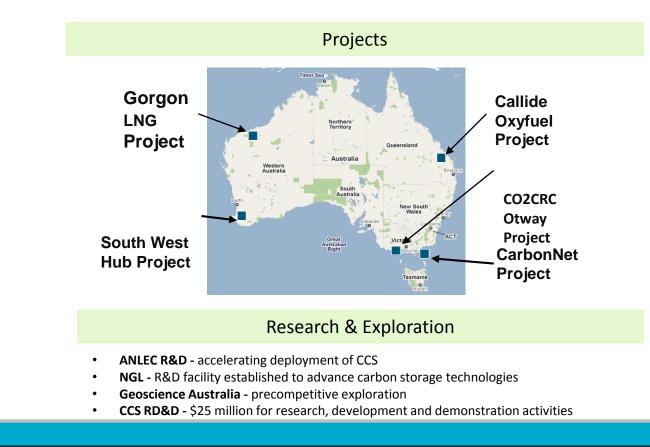


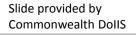

2016 NETL CO₂ Capture Technology Project Review Meeting


CCS drivers in Australia

• Export of fossil fuel products

Source: Department of Industry and Science (2015) Australian Energy Statistics, Table




Australia's approach to CCS

- Policy position
- Understanding the CCS resource
- Demonstrating domestic LET capacities & capabilities
- Strategic partnering
- Building Australian skills and capacity
 Innovation

The Story So Far in Australia Key CCS Projects & Key Research Initiatives

4 | Effective CO₂-capture technology development in Australia | Paul Feron

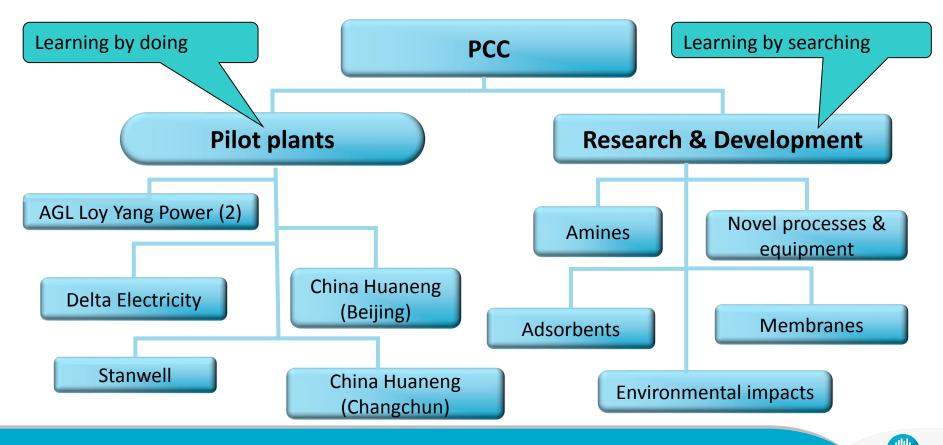
Australian coal fired power stations

			(150
	Black coal	Brown coal	australia
Average efficiency [% HHV]	35.6	25.7	Australia Fuel 50 0 Cap
CO ₂ emission [tonne/MWh]	0.9	1.3	
SO ₂ concentration [g/m ³]	0.5 – 1.7	0.2 - 0.7	No CO ₂ Capture 90 % CO ₂ Capture
NO _x concentration [g/m ³]	0.4 – 1.5	0.2 - 0.4	PCC Investment costs 8% 27% 9 FGD + SCR 9 Pre-treatment 9 Blower 9 Absorber 9 Heat exchangers 9 Stripper/Reboiler 0% 14%
Particulate matter [mg/m³]	10 - 100	10 - 60	
Flue gas temperature [°C]	120	180	
Data derived from	n CCSD – technology assessm	nent report 62	

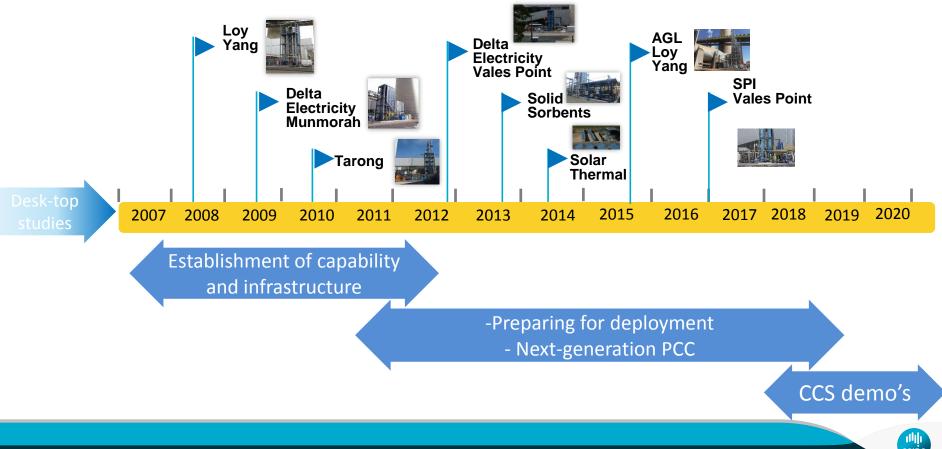
PCC technology requirements

Energy Efficient

• Towards zero energy penalty


> Affordable

• Costs lower than other LET's


Environmentally benign

• Zero harm to the environment

CSIRO's PCC program

Piloting PCC Technologies in Australia

PICA Project

Project aims:

40% lower cost of CO₂ capture compared to the MEA base case

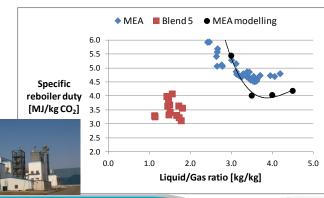
□ Advanced packing materials, liquid absorbent and process

- to provide information on long-term performance and reliability of advanced liquid absorbents and equipment that have been developed in-house by both IHI Corporation and CSIRO independently in preparation of demonstration phase
- Supporting large-scale CCS as an affordable, secure and environmentally benign option for power generation

http://www.csiro.au/en/News/News-releases/2016/PICA-powers-up-to-improve-CO2-capture

Approaches for reduction capture energy

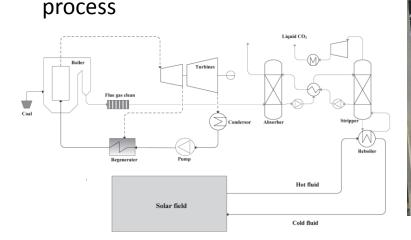
- Development of amine formulations/new amines
- Process development
 - Novel process design
 - □ Innovative equipment
- Renewable energy integration
 - Solar thermal
 - □ Light swing absorbents
- Integration with Direct Carbon Injection Engine
- Absorption enthalpy conversion



Development of amine formulations/new amines

Formulations base on primary amines

- □ Selection of a first amine that reacts rapidly with CO₂ through the formation of a carbamate
- □ Selection of a second amine:
- preferably with little or no carbamate formation and being a stronger base than the first amine
- such that the enthalpy of protonation is large to maximise the temperature dependent pH change to aid thermal desorption of CO₂
- Optimisation of the formulation composition to achieve acceptable physical properties
- \Box Assessment of CO₂ absorption rates and reboiler duties
- Designer amines and functionalised amines
 Focus on diamines with dual functionality
 Higher molecular efficiency



Solar thermal energy for absorbent regeneration

- Avoiding interface with existing steam cycle
- More effective in terms of CO₂-emission reduction
- Introduction of flexibility into the capture

Pilot plant at Vales Point power station

- Integrated with existing PCC pilot plan
- 65 kW_{th} solar array

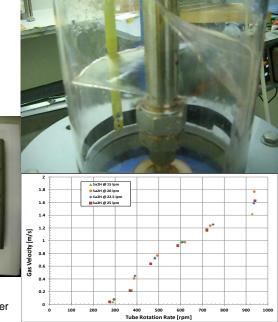
http://arena.gov.au/files/2015/08/3-A006-Final-Report-and-Lessons-Learnt.pdf

Approaches for reduction capital costs

- Development of amine formulations/new amines
- > Aqueous ammonia process development
- Packingless contactors: the rotating liquid sheet contactor
- ➢ Integrated removal of SO₂ and CO₂: CS-CAP
- Selective flue gas recirculation
- Solid sorbents
- Membrane assisted liquid absorbent regeneration

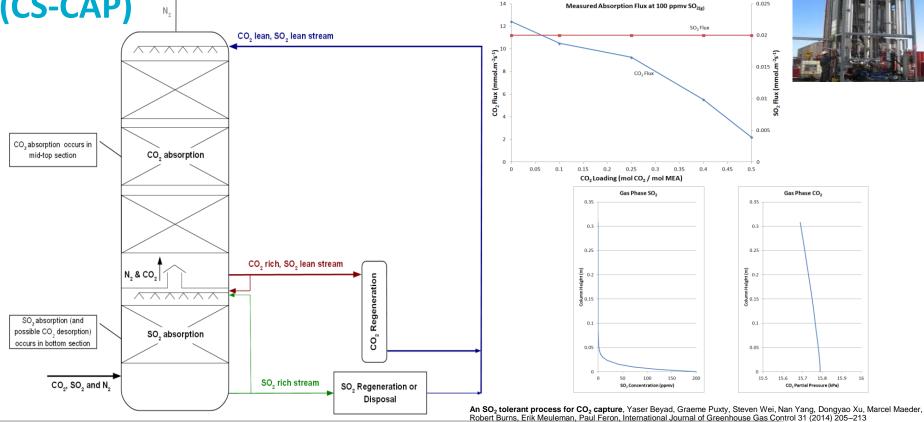
Rotating Liquid Sheet contactor

Basic principles


- Surface area of stabilized liquid sheet greater than that of resulting droplets.
- Rotating liquid surface proven experimentally to pump gas.
- Centrifugal + liquid pumping force creates interfacial area.

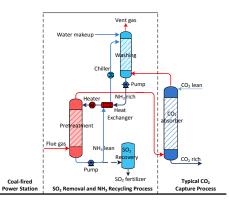
Advantages

- Higher gas velocities possible.
- Liquid entrainment significantly reduced
- Suitable for viscous solvents


Challenges

- Scale-up to commercial scale
- Liquid residence time low

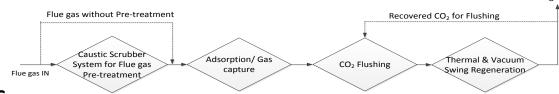
Integrated Single Stream SO₂ and CO₂ Capture (CS-CAP) N₂ Measured Absorption Flux at 100 ppm SO₂₁₆₀



Aqueous ammonia for PCC in Australia

- Indestructable liquid absorbent
- Chemical well-known to electricity industry
- Suited for "contaminated" feed gases
- Fertiliser by-product
- Product CO₂ at elevated pressure
- Technical feasibility demonstrated in pilot plant but no cost advantage
- Addressing challenges:
 - □ Mass transfer promotion, temperature increase
 - □ Vapour suppressors
 - □ Further integration of pretreatment and water wash
 - Process design

Li et al., Environ. Sci. Technol. 2015, 49, 10243-10252

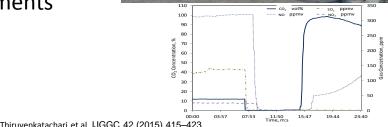


17 | Effective CO₂-capture technology development in Australia | Paul Feron

Solid sorbent CO₂ Capture Unit at Vales Point power station

> Objective

- □ to evaluate the stability of honeycomb CF composite monolithic adsorbents using the real flue gas at Vales Point Power Station
- □ to understand the effect of real flue gas characteristics on the operation and performance of the CO₂ capture unit



➢ Results

- □ Excellent stability to real flue gas over 200 experiments
- \Box CO₂ adsorption efficiency consistently over 98%
- \Box CO₂ desorption efficiency between 90-95%
- \Box Near complete removal of SO₂ and NO_x
 - Could be pretreatment unit for amine based PCC Thiruvent

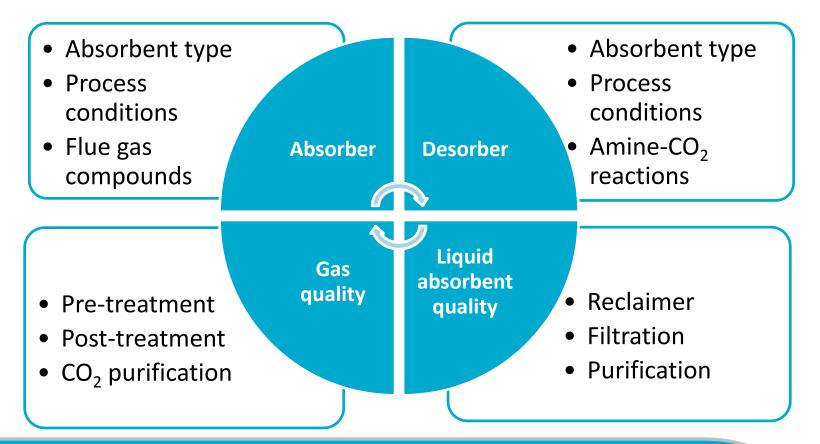
Emission issues addressed via integrated risk-based approach

Formation of potentially harmful components
 Absorbent degradation in absorber
 Absorbent degradation in desorber

2. Emission analysis

Estimation of concentrations using process models
 Actual measurements in pilot plants

3. Dispersion


Environmental chamber to investigate atmospheric degradation
 Updating dispersion models with atmospheric chemistry

Managing environmental impacts of amine based PCC processes

Outlook for PCC in Australia – Next steps

- Qualification of new liquid absorbents towards deployment
 Formulations and designer amines
 Optimisation of process design
- > Development of SO_2/CO_2 process concepts
- Focus on process & equipment innovation
- Solar thermal integration demonstration
- - Advanced liquid absorbent systems

Acknowledgements

Thank you

Energy

Paul Feron, Senior Principal Research Scientist

- t +61 2 4960 6022
- e paul.feron@csiro.au
- www.csiro.au/en/Research/EF/Areas/Coalmining/Carbon-capture-and-storage

CSIRO TV <u>http://tv.csiro.au/#v=xbz189hynwj6</u>

Reference materials

- Assessing Post-Combustion Capture for Coal-fired Power Stations in Asia-Pacific Partnership Countries CSIRO Report EP116217, April 2012 (DOI: 10.13140/RG.2.1.4547.6966)
- Research Opportunities in Post Combustion CO₂ Capture, Paul H.M. Feron et al., October 2009, available from <u>www.anlecrd.com</u>
- Assessing Atmospheric Emissions from Amine-based CO₂ Post-combustion Capture Processes and their Impacts on the Environment – A Case Study: Volume 1 - Measurement of emissions from a monoethanolamine-based post-combustion CO2 capture pilot plant, Merched Azzi et al., report to Global Carbon Capture and Storage Institute, May 2014
- Assessing Atmospheric Emissions from Amine-based CO₂ Post-combustion Capture Processes and their Impacts on the Environment – A Case Study: Volume 2 - Atmospheric chemistry of monoethanolamine and 3D air quality modelling of emissions from the Loy Yang post-combustion capture plant, Merched Azzi et al, report to Global Carbon Capture and Storage Institute, May 2014
- Gaseous emissions from amine based post-combustion processes and their deep removal, Merched Azzi et al., IEA Greenhouse Gas R&D Programme (IEA GHG), Report 2012/07, May 2012
- Amine based post-combustion capture technology advancement for application in Chinese coal fired power stations, Paul Feron et al., Energy Procedia 63 (2014) 1399 1406
- Designer Amines for Post Combustion CO₂ Capture Processes, Will Conway et al., Energy Procedia 63 (2014) 1827 1834